Graphic layout designs play an essential role in visual communication. Yet handcrafting layout designs are skill-demanding, time-consuming, and non-scalable to batch production. Although generative models emerge to make design automation no longer utopian, it remains non-trivial to customize designs that comply with designers' multimodal desires, i.e., constrained by background images and driven by foreground contents. In this study, we propose \textit{LayoutDETR} that inherits the high quality and realism from generative modeling, in the meanwhile reformulating content-aware requirements as a detection problem: we learn to detect in a background image the reasonable locations, scales, and spatial relations for multimodal elements in a layout. Experiments validate that our solution yields new state-of-the-art performance for layout generation on public benchmarks and on our newly-curated ads banner dataset. For practical usage, we build our solution into a graphical system that facilitates user studies. We demonstrate that our designs attract more subjective preference than baselines by significant margins. Our code, models, dataset, graphical system, and demos are available at https://github.com/salesforce/LayoutDETR.
translated by 谷歌翻译
Dense retrievers have made significant strides in obtaining state-of-the-art results on text retrieval and open-domain question answering (ODQA). Yet most of these achievements were made possible with the help of large annotated datasets, unsupervised learning for dense retrieval models remains an open problem. In this work, we explore two categories of methods for creating pseudo query-document pairs, named query extraction (QExt) and transferred query generation (TQGen), to augment the retriever training in an annotation-free and scalable manner. Specifically, QExt extracts pseudo queries by document structures or selecting salient random spans, and TQGen utilizes generation models trained for other NLP tasks (e.g., summarization) to produce pseudo queries. Extensive experiments show that dense retrievers trained with individual augmentation methods can perform comparably well with multiple strong baselines, and combining them leads to further improvements, achieving state-of-the-art performance of unsupervised dense retrieval on both BEIR and ODQA datasets.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user's interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seed-guided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.
translated by 谷歌翻译
Dry Eye Disease (DED) is one of the most common ocular diseases: over five percent of US adults suffer from DED. Tear film instability is a known factor for DED, and is thought to be regulated in large part by the thin lipid layer that covers and stabilizes the tear film. In order to aid eye related disease diagnosis, this work proposes a novel paradigm in using computer vision techniques to numerically analyze the tear film lipid layer (TFLL) spread. Eleven videos of the tear film lipid layer spread are collected with a micro-interferometer and a subset are annotated. A tracking algorithm relying on various pillar computer vision techniques is developed. Our method can be found at https://easytear-dev.github.io/.
translated by 谷歌翻译
Focusing on the complicated pathological features, such as blurred boundaries, severe scale differences between symptoms, background noise interference, etc., in the task of retinal edema lesions joint segmentation from OCT images and enabling the segmentation results more reliable. In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network, which can provide accurate segmentation results with reliability assessment. Specifically, aiming at improving the model's ability to learn the complex pathological features of retinal edema lesions in OCT images, we develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module of our newly designed. Meanwhile, to make the segmentation results more reliable, a novel uncertainty segmentation head based on the subjective logical evidential theory is introduced to generate the final segmentation results with a corresponding overall uncertainty evaluation score map. We conduct comprehensive experiments on the public database of AI-Challenge 2018 for retinal edema lesions segmentation, and the results show that our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches. The code will be released on: https://github.com/LooKing9218/ReliableRESeg.
translated by 谷歌翻译
The ubiquity of camera-embedded devices and the advances in deep learning have stimulated various intelligent mobile video applications. These applications often demand on-device processing of video streams to deliver real-time, high-quality services for privacy and robustness concerns. However, the performance of these applications is constrained by the raw video streams, which tend to be taken with small-aperture cameras of ubiquitous mobile platforms in dim light. Despite extensive low-light video enhancement solutions, they are unfit for deployment to mobile devices due to their complex models and and ignorance of system dynamics like energy budgets. In this paper, we propose AdaEnlight, an energy-aware low-light video stream enhancement system on mobile devices. It achieves real-time video enhancement with competitive visual quality while allowing runtime behavior adaptation to the platform-imposed dynamic energy budgets. We report extensive experiments on diverse datasets, scenarios, and platforms and demonstrate the superiority of AdaEnlight compared with state-of-the-art low-light image and video enhancement solutions.
translated by 谷歌翻译
Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
Faced with the threat of identity leakage during voice data publishing, users are engaged in a privacy-utility dilemma when enjoying convenient voice services. Existing studies employ direct modification or text-based re-synthesis to de-identify users' voices, but resulting in inconsistent audibility in the presence of human participants. In this paper, we propose a voice de-identification system, which uses adversarial examples to balance the privacy and utility of voice services. Instead of typical additive examples inducing perceivable distortions, we design a novel convolutional adversarial example that modulates perturbations into real-world room impulse responses. Benefit from this, our system could preserve user identity from exposure by Automatic Speaker Identification (ASI) while remaining the voice perceptual quality for non-intrusive de-identification. Moreover, our system learns a compact speaker distribution through a conditional variational auto-encoder to sample diverse target embeddings on demand. Combining diverse target generation and input-specific perturbation construction, our system enables any-to-any identify transformation for adaptive de-identification. Experimental results show that our system could achieve 98% and 79% successful de-identification on mainstream ASIs and commercial systems with an objective Mel cepstral distortion of 4.31dB and a subjective mean opinion score of 4.48.
translated by 谷歌翻译
Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
translated by 谷歌翻译